
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Evaluation of an Eager Protocol 
Optimization for MPI

Ron Brightwell and Keith Underwood
Center for Computation, Computers, Information, and 

Mathematics
Sandia National Laboratories

Albuquerque, New Mexico, USA



Introduction

• Nearly every MPI implementation uses a rendezvous protocol for 
long messages
– Optimized for bandwidth
– Mandated by

• Network
– Message selection for appropriate remote destination

• Operating system
– Resource management (pinning pages)

• No such restrictions on ASCI Red
– No packetization
– No page pinning

• Does an eager protocol make a difference?
• Do we need an eager protocol for Red Storm?



ASCI Red

• Hardware
– 4640 compute nodes

• Dual 333 MHz Pentium II 
Xeons

• 256 MB RAM
– 800 MB/sec bi-directional 

network
– 38x32x2 mesh topology

• Software
– Puma/Cougar LWK
– Portals 2.0

• 2.38/3.21 TFLOPS
• Deployed in 1997



MPI Implementation for ASCI Red

• Short messages (<8KB) are sent eagerly and 
buffered at the receiver

• Long messages are sent eagerly
– Expected messages (pre-posted) are delivered 

directly into the user buffer
– Unexpected messages leave a message header that 

allows the receiver to get message from the sender 
when matching receive is posted

• Fully supports the MPI Progress Rule
– Data moves without making MPI library calls
– Portals takes care of progress



Reasons for an Eager Protocol

• Portals are based on expected messages
• Don’t penalize applications that pre-post receives
• Optimize for the common case (pre-posting)
• Penalty for not pre-posting is not very high

– Network performance (balanced machine)
– Jobs are placed close together in the network so 

contention should be local
• Previous research had shown eager protocols to be a 

significant performance advantage
• MPI implementation is less complex since progress is 

maintained outside of the MPI library



Motivation

• But is eager better?
– No real data that pre-posting is the common case
– Not sure whether the eager optimization improves 

application performance
– Unclear whether packetization is an issue

• Direct comparison with standard rendezvous 
might answer these questions



Standard Rendezvous Implementation

• Short protocol is the same
• Long protocol

– Sends a zero-length message and waits for receiver 
to read data

– Receiver waits for zero-length message and reads 
data

• Can choose eager or standard rendezvous at 
runtime via environment variable



Added Complexity

• Completion of eager protocol messages only 
involve the particular message being completed 

• Standard rendezvous
– Must look at all outstanding communication 

requests since it cannot block waiting for only one 
to complete

– Does not comply with the MPI Progress Rule
• (Or is less efficient since data can only move when 

MPI library calls are made)



Micro-Benchmarks

• Ping-pong bandwidth test
– Pre-posted receives

• Post-Work-Wait (PWW) method of the COMB benchmark suite
– Calculates effective bandwidth for a given simulated work 

interval
– Used to measure the achievable overlap of computation and 

communication
– Pre-posted receives

• NetPIPE
– Determines aggregate throughput by exchanging ping-pong 

messages for a fixed period of time
– Pipeline test that sends several messages in a burst (ping(n)-

pong)
– No guarantee of pre-posting



Ping-Pong Performance



PWW Performance



NetPIPE Ping-Pong



NetPIPE Pipeline



New Micro-Benchmark

• Only NetPIPE considers unexpected messages
• Real applications are likely to have mixture of 

pre-posted and unexpected messages
• How do unexpected messages impact 

bandwidth?

• We designed a new micro-benchmark that 
measures bandwidth with a parameterized 
percentage of pre-posted receives



Performance for 10KB Messages



Performance for 100KB Messages



Performance for 1MB Messages



So eager is better, right?



CTH Application

• Models complex multi-dimensional, multi-material 
problems characterized by large deformations 
and/or strong shocks

• Uses two-step, second-order accurate finite-
difference Eulerian solution

• Material models for equations of state, strength, 
fracture, porosity, and high explosives

• Impact, penetration, perforation, shock 
compression, high explosive initiation and 
detonation problems



Expected vs. Unexpected Messages

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Node

Expected
Unexpected

*Average
msg
size is 
500KB



CTH Runtime

1220

1225

1230

1235

1240

1245

1250

1255

1260

Eager Standard

Protocol

Ru
nt

im
e 

(s
ec

on
ds

)



CTH Results

• Performance is better with the eager rather than 
standard rendezvous

• New micro-benchmark doesn’t consider 
independent progress, which could be important

• Need to do more analysis of real applications to 
understand implications of unexpected messages 
and independent progress



Summary

• Described an implementation of a standard 
rendezvous and eager rendezvous

• Initial premise was that eager rendezvous had a 
significant advantage over standard rendezvous

• Standard rendezvous is more complex and does 
not support the MPI Progress Rule (or is less 
efficient at independently moving data)

• Presented a new micro-benchmark and results
• Application results show that micro-benchmarks 

don’t tell the whole story


	Evaluation of an Eager Protocol Optimization for MPI
	Introduction
	ASCI Red
	MPI Implementation for ASCI Red
	Reasons for an Eager Protocol
	Motivation
	Standard Rendezvous Implementation
	Added Complexity
	Micro-Benchmarks
	Ping-Pong Performance
	PWW Performance
	NetPIPE Ping-Pong
	NetPIPE Pipeline
	New Micro-Benchmark
	Performance for 10KB Messages
	Performance for 100KB Messages
	Performance for 1MB Messages
	So eager is better, right?
	CTH Application
	Expected vs. Unexpected Messages
	CTH Runtime
	CTH Results
	Summary

